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An extensive literature is devoted to the investigation of the behavior of
perturbations of plane parallel steady flows (see [1 and 2]). Basic atten-
tion 1s usually glven to the determination of the stability of these flows
and calculation of the critical values of the Reynolds number. Meanwhile,
for the construction of a nonlinear stabillty theory, for the investigation
of the behavior of distrurbances of arbitary form, and also for the solution
of & number of other problems, a knowledge is required not only of the criti-
cal perturbations, but also the whole spectrum of normal perturbations in
the entire range of variation of the two parameters Reynolds number and wave
number .

For large values of Reynolds number the spectrum of perturbations can be
investigated by an asymptotic method. In the paper of Grohne [3] results
are gliven of such en investigation for Couette and Polseuille flow and dis-
cussion 1is given o~ the dependence of certain "lower” decrements on the Rey-
nolds number for fixed values of the wave number.

In the present paper we construct and use expansions of the normal per-~
turbations and their decrements in power series in the Reynolds number R
These expansions permit us to establish the characteristic features of the
spectrum of perturbations for small Reynolds number for an arbitrary veloclty
profile.

In a quiescent fluid (R = 0) the perturbations decay monotonously (all
decrements are real and positive). For R # O the form of the spectrum is
qualitatively different in the cases of flows with even and odd profiles.

In flows with even profiles the decrements are complex for arbitrarily small
R , that 1s the perturbations are only "running” perturbations, whose phase
velocity increases with R . In the case of a flow with an odd profile the
expansions of the decrements are found to be real ("standing” perturbations);
however in this case there is on the R-axis a singular point R, and the
expansions are correct only up to it. At that point the decrements merge
with the corresponding perturbation of the other parity, and for R > R,
complex conjugate decrements occur. Simple intersections in the spectrum
are impossible, as 18 shown.

As examples the decrements for some lower levels of the spectrum are cal-
culated in the paper by the method of perturbations at arbitrary values of
the wave number for Polseuille and Couette flows and a flow with a cubic
velocity profile.
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1, DNormel perturbations. Orthogonality oonditions. We consider plane
parallel steady motion of a fluld between the planes x = + % . We choose
as unit of veloclty a characteristic velocity Uy of the steady motion, and
as units of. length and time we choose % and »®/yv , respectively (where v
is the kinematic viscosity). The stream function of small perturbations of
the steady motlon satisfies a linear equation with coefficients not depending
upon z and ¢t (where 2 1s the coordinate along the flow and ¢ the
time). Consequently, there exist normal plane perturbations of the form
¢ (z) exp (— Al + iaz), where o 1s a real wave number, and o(x) and A
are the amplitude and decrement of the perturbation. The decrement ). is
related to the complex phase velocity of the perturbation ¢ = c¢,+ e, Dby
the relation A = tae , that is

Re A = — ac;, Im A = acr (1.1)
The amplitude ¢(x) satisfies the Orr-Sommerfield equation

(U —5) @ —a9) — g = 5 @7 — 200 + k) (R="20) 1)

/

and the conditions on solid boundaries
(p=(p'=0 for z =—= -1 (13)

Here U{(x) is the velocity of the steady motion, and R is the Reynolds
number. We introduce in place of the phase velocity o the decrement ) ,
and rewrite (1.2) in the form

. . d2
Ly =rHp — A% = LAg (r = iaR, A — az) (1.4)
Here 4 1s an operator depending upon the profile v(x)
Hp = UAg — U'p (1.5)

Equation (1.4) and the boundary conditions (1.3) determine an infinite
sequence of normal perturbations e, (x) and decrements A, . The operator
I in (1.4) 1s not self-adjoint, and its eigenvalues X, and eigenfunctions
@, are in general complex.

We consider an adjoint boundary-value problem. To find the form of the
adjoint operator we multiply the equation that 1s the complex conjugate of
(1.4%) by the function ¢(x) , which satisfies the boundary conditions

"J’x\P/:O ﬂ” =41 (1.6)

and integrate with respect to x from — 1 to + 1 . Interchanging deri-
vatives of ¢' and ¢ through integration by parts, and equating to zero
the factor of ¢%, we obtain

L= —rH" — AW = A*Ay,  H¢=AUy)—Uyp A7)

Equation (1.7) and conditions (1.6) determine an infinite sequence of
conjugate normal perturbations y,(x) and decreaments X *

The perturbations ¢, and conjugate perturbations y, belonging to dif-
ferent decrements A, and A * are orthogonal in a definite sence. From
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(1.%4) and (1.7) can be obtained the relation
(s — M) (i Aguds = 0 (1.8)

(here and henceforth integration with respect to x 18 carried between the
limits from — 1 to +1). From (1.8) with X ,# A\, follows the orthogonality

condition K‘Pk* Agidz = 0 (1.9)

2. Perturbations in a quiesoent fluid. We consider first the spectrum
of perturbations in a quiescent fluid (® = 0)., In this case the operator
1s self-adjoint. For real normal perturbations ¢, ° and the conjugate per-
turbations ¢,/ corresponding to them we will have Equation

A0 = — AOAp O (2.4)
and boundary conditions
QO =@ =0 for z =41 (2.2)
From (2.1) follows the orthogonality condition
S‘Pi“” Agr® dz = 0 (i k) (2.3)

For { = % the integral in (2.3) is always negative, and consequently
the eigenfunctions /9 can be normalized to — 1 . The orthogonality
condition takes the form

{0 Mg do = — 8, (2.4)
From (2.1) it is easy to obtain the relation
AO) = — Sq,(m A% dg / S(P(O) A dz 2.5)

The integral in the numerator of (2.5) 18 always positive, but the nor-
malizing integral in the denominator 1is negative. Thus the eigenvalues o
are real and positive — all perturbations in a quiescent fluld decay monoto-
nously.

The problem (2.1) - (2.2) has even and odd solutions. The normalized
even eigenfunctlons are

1
(Pi(o) _ 1 E::n— cos in(O) — oy ] (i=0,24,...) (2_5)
a

Vi

0
cos in( ) _ a2
where
M(o)
= — e (a® \ _ 2 q — @
Jy T@ ) (0? + glush o — @haon? 0 — 1)
The decrements of the even parturbations are determined by Equation

Vi® — o m) A® — 2 = — qeamna 2.7)
and depend upon the wave number o . For o =0

MO =, (i + 2) n? (i=0,2,4,...) (2.8)

With increasing o the decrements M@(a) of the even perturbations
at first decrease, pass through a minimum, and then increase, so that for
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a>1
MY =g (@ AR e (2.9)

The odd eigenfunctions are

1 [smm a  sinV 20 q ]

Q0 = e [ - —
V‘Ii sinh o sin V;‘i(m — 2

Here
0
;L‘( )

2 (a2 — 3,

The decrements of the odd perturbations are found from Equation

Va0 Z a2 ot A0 g2 = g com o (2.11)

For o = 0 the decrements are the roots of Equation VM(O) cot ]/}:(77) =1
and are: A, = 20.191, A,® = 59.680, A, =118.90, ... (see [41).
With increasing o all odd decrements increase monotonously, and for ot> 1
Equation (2.9) is valid with ¢ =1, 3, 5, ... For all values of the wave

number o the even and odd decrements A% alternate with increase of ‘the
index ¢ ; their sequence in increasing order is A,(® A0 A,® |

Ji =

(0% - g coth @ — 2 com? g — A{®)

The complete orthonormal system of base functions (2.6) and (2.10) 1is
conveniently used for approximate solution of the Orr-Sommerfeld equation
in various variants of the perturbation method, and also for reduction of
that equation to a system of algebralc equations with the use of an elec-
tronic computer. In [5] the even subsystem of functions (2.6) was used for
numerical calculation of the stability of plane Polseuille flow.

3. Expansion of powers of Meynolds number. In the previocus section we
considered perturbations and their decrements in a quiescent fluld (R = 0},

For small values of Reynolds number we can seek the solution of the problem
in the form of a seriles in powers of the parameters » = faf . We set

¢ =@ 4 re® 4 rg® - ., A== A0 A - e L (3.1)
Substituting the series (3.1) into Equation (1.4) and equating terms with
like powers of r we obtain the equations of &8 sequence of approximetions

A%® + AOAQO = 0

A% + AOAGY = — AV AG® + He®
A% 1 A0 AG® = — ADAGO — A AGH + Heh
3.2)
Al MO Ap = — A AG") — An—1) Agh) -, . . — AW Agn-1) 4 Hem-n
oM = o =0 for = 41 (3.3)

The first of equations (3.2) (the zeroth spproximation), representing
perturbations in a qulescent fluid, was considered above. Corrections to
@9 are found from equations of the form

A - A AP = f, (z) (3.4)
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Here the f,(x) are known functions, depending on the preceeding approxi-
mations and contalning the AM. Multiplying (3.%) by ¢(® and integrating
with respect to x , we obtain the conditions of solvability of (3.4)

(@@ dz=0 3.5)

from which are found the corrections to the decrements A!™. Then solving
the nonhomogeneous equations (3.4) with the boundary conditions (3.3) we
find the Q“”; In this way we can determine in succession the coefficignts
of the expansions (3.1). It is easy to see that all the @™ and A(M are
real, and the series (3.1) may be written, separating real and imaginary
parts, 1n the form

® = @ — TR + atRGY — ... ) + iaR (@ — RO +

+ ot Rig® — . . .) (3.6)
b= (MO —a2RM® 4+ gfRA® — ... ) + iaR (M) — ?2R2® 4
1 oob RAG — ) 3.7)

From (3.5) with consideration of the normalization condition (2.4) we find

AD == — Sq)(o) Ho®dz, Ao = A® Sq)w) ApWdz — SQ(O)H(pmdx
(3.8)
A — A® S‘pm Ag® dz + AW S(p(m Ag® dz — Sq;w)Hq,(z) dx

An expansion in powers of the parameter r can be constructed also for
the solution of the adjoint problem (1.7). In so doing one uses equations
analogous to those given above, with T replaced by — T and 5§ by #g*.

The sequence of approximations is conveniently found by use of the method
of perturbations, expanding ¢9” in the basic system of eigenfunctions-of
the unperturbed problem (2.1)

™ = ; cix™ @0 (3.9)

We give the equations for the corrections of first and second order to the
eigenvalues and eigenfunctions of the tth 1level :

H
1) — — H. 1) = p.. . ki
As Hy, @) = ¢;; Wyl 4 2 ENCISTYOR P (3.10)
P ¢
A’i(z) — Z Hik Hki
PR ROy
H H
P =@ P — D) e X} TH | )
W l§i MY — 2, [ + M — 10 B
Hy Hy
+22 0 3.11
o it A7 — 1,y (a7 3,0 P G0
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Here

Hy = Scpi“» Hpy® dz (3.12)

The summations in Equations (3.10) and (3.11) run over tihe unperturbed
levels., The coefficients ¢!V and ¢;(® are determined by normalization.

The expansions obtained in this section are valid up to a singular point,
As will be evident from what follows, the existence of this singular point
1s connected.with the symmetry of the profile U¢(x) of the steady motion.
The expansions are found to be essentlally different in the cases of flows
wlth even and odd velocity profiles. Henceforth these cases will be consi-
dered separately.

4, PFlows with even profiles. If the profile of the steady flow has the
symmetry property U{— x) = U(x) (an example would be plane Poiseuille flow),
then the arbltrary values of the parameter r there exlst even and odd solu-
tions of the problem (1.3), (1.4). Thus the perturbation spectrum decomposes
into two independent systems o even and odd levels. The parity of any of
the levels at any value of Reynolds number is determined by the parity at
r = 0 . From the equations for successive approximations (3.2) it follows
that for an even U(x) , and consequently an even operator K , all correc-
tions ¢“” have Jjust the same parity as the zeroth approximation w“”. As
is evident from Equations (3.8), all the A™, are in this case generally
different from zero, and conseqQuently the decrement A 1is complex for arbi-
trarily small r . Thus in the flow with an even profile the velocity per-
turbations are only "running" perturbations, whose phase velocity

¢ =erIm A =R A" — @R 4+ | ) 4.1)

is, for small values of the Reynolds number, proportional to £ .

As an example we consider plane Polseuille flow with_the parabolic pro-
file U = 1 — x°. We find the corrections 3 and A® of first and second
order to the decrement by using the theory perturbations,

The matrix elements of the perturbatlon operator X,, appearing in (3.10),
(3.11) are different from zero only for equal parity of the indices. If 1
and x are even, then

1 1 4,19 (0,1 — 23,@)
Hy = V——Eﬂ {[aa 3O (1, @ — 2,00y ] (0* + awnnf — ofiandd @) + (4.2)
2)\{‘0) (3)*(0) _ M(O)) .
+ (li(w ""7‘1:(0))2 } (l #: k)
1t 1 4 AN
Hy = 7 {(3’5 +‘;;:-+ 3::‘“” + 471.—) (0 4 anankta — alyqea) — (4.3)

SN 1S ST SN
N a i t ) N } (@ = o — 2, )

—(t e T ) it

In the case of odd { and % .uc equations for the matrix elements are
obtained from (4.2) and (4.3) by replacing tanha by cothqg .
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Substituting the Hy,, into equations of perturbation theory (3.10) and
(3.11) we obtain the A/ and 1;®) as functions of the wave number o .
The series of perturbation theory, which it 1s necessary to sum by calcula-
tion of the quadratic corrections to the decrement szﬁ converge suffi-
clently rapidly. The rapidity of convergence 1is evident, for example, from
the formulas for )\1_(2) with g =0 and a1

2 (24 92 @+ R
)\i(z)z J-_—[G—kg [(2 F i)z — 2+ k)2]5 (u == 0)
212 (i + 1)k + 1)

(where 1 1s even; summation carried over even values of ¥ ).

Fig.l shows 3 (1) and 3,1 as functions of o . The corrections
and 1;1)to the bdd levels are near
to 0.7 and practically do not depend

upon a(1;13>1f”).(*)Fig(2 shows the agorm T
quadratic corrections A;'2 to the
decrement for the "lowest" four levels,
From the graphs 1t 1is seen that some @ »
of the quadratic corrections change A, A,
sign with varying o« . As is clear 0 N 4
25 AP — ]
T A
a7/ < % '
> 7 N 4
= / a 20010
o5 71 | / ,
/
@ 7 7 = -mzoL_me__J

Fig. 1 Fig. 2

from the expansion (3.7), the sign of XW), indicates the 1ncrease or decrease
of _stability with increasing &, 2220 corresponding to a reduction and
A@)<: 0 to an increase of stablility compared with R = O .

5, PFlows with odd profiles. We consider now a steady flow wlth an odd
profile: U(—x) = — U(x) . As a consequence of the oddness of the operator
H the solutions of the problem (1.3), (1.4) for any arbitrary r # 0 do
not possess a definite parity.

We consider first of all the structure of the matrix of the operator L
in (1.4) in the case of odd F . Choosing as a basis the functions @,(0)
of (2.6) to (2.9), we rewrite (1.4) in matrix form

Z Cn [(}\, - A'n(o)) 6mn - iaRH‘mn] =0 (51)
n
where the o, are the coefficients of the expansion of the perturbation o

on the basis of the functions @,(® and the matrix elements 4,, of the oper
ator g are different from zero only for indices of different parity. By

*) ghe first-order corrections X?’ and Xg) were calculated previously
in [6].



100 R.V. Birikh, G.Z. Gershuni and E.M, Zhukhovitskii

a unitary transformation the matrix corresponding to Equation (5.1) can be
reduced to the real form

(A — A §m" 4 (—1)*aR Homn) (5.2)

and consequently the eigenvalues of Equation (5.1) are either real or form
complex conjugate pairs.

We turn to the equations of the successive approximations (3.2) and (3.8).
From the first equation of the system (3.8) 1t follows that A1) = (). Then
the second equation of the system (3.2) leads to the conclusion that the
correction @{!* has parity opposite to @(®). The condition of solvability
of the equation for qﬂ” permits determination of A(ﬂ’ which is, generally
speaking , different from zero; then the functions qu have the same
parity as qﬂ°h Progressing further in the system (3.2) and the conditions
of solvabllity (3.8), it is easily seen that all odd corrections to the
decrement vanish: Al = AG) = . |, = 0, and consequently the functions
‘(™ have alternating parity.

Thus in flows with odd veloclty profiles the expansion of the decrement
A in powers of Reynolds number is found to be real

A= MO — g2RA) - RO — (5.3)

Hence it follows that for small Reynolds number the perturbations of odd
flows anr: monotonous; their phase velocity o,= O ("stabding”perturbations)
Furthermore, it i1s evident from the expansion (3.6) that the real part of
the perturbation ¢ has the same parity as @!” (the perturbation for
R = 0), and the parity of the imaginary part of ¢ 1s opposite to that of
@®), Thus the expansions (3.6) arising from even and odd levels ;¥ at
R = 0 have different forms. If ;¥ 1s real eigenfunction of an even level
(t =0, 2, 4, ...) at R = 0, then with increasing AR there appears an
imaginary odd part proportional to R for small R . For odd @;\" (1 = 1,
3, 5 ...) there appears for Rk # 0 an even imaginary part. It is possible
by convention to call the expansions of ¢, "even" for t =0, 2, 4, .., and
"odd" for t =1, 3, 5, ..., and for R # O, since for R -~ 0, they reduce
respectively to the even and odd functions @#m

The conclusions obtained regarding the reality of the decrements and the
form of the expansions for the eigenfunctions are valid naturally only up to
the singular point on the R-axis. That such a singular point actually exists
is indicated, for example, by the results of investigations of the pertur-
bation spectrum for plane Couette flow (cf. [3 and 7]), from which arises
the existence, beginning at a certain Reynolds number, of perturbations with
complex decrements. It wlll be shown below that the appearance of oscilla-
ting perturbations 1s connected with the intersection of the "even" and
"0dd" levels.

We obtain a necessary conditlon for the appearance of oscillating pertur-
bations which arises directly from the property of oddness of the profile
U(x) . For this purpose we shall devide the solutions of the basic and
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adjoint problems into even (subscript ¢) and odd (subscript y) parts

P = Qg + Pu, Y =g + Yu (5.4)
Multiplying Equation (1.4) in turn by ¢, and y,, and (1.7) by ¢, and
o, and integrating with respect to x , we obtain four integral relations.
From these relations, with consideration of the oddness of the operators §
and J* and the connection between them, follows

3 — 1) {0 A — $oAgel dz = 0 (5.5)

The integral in (5.5) will henceforth be denoted by I . From (5.5) fol-
lows a necessary condition for the appearance of oscillating perturbations
(A\*# 1), the vanishing of the integral I . Untill then the expansions {3.6)
and (3.7) are valid, the decrements are real (A"= 1) , and the real integral
I 1is different from zero and has different signs for the "even" and "odd"
levels. Indeed for R - O the functions (5.4) reduce to functions of defi-
nite parity, and by virtue of the normalizing conditions (2.4) we have
I =+ 1 , where the plus and minus correspond respectively to the even and
odd levels. (We recall that the conjugate solutions for R = O were chosen
to coincide with the basic ones).

Thus for any of the normal perturbations ("even" or "odd") the integral
I #0 for R =0 and, consequently, also for small R . Hence the vanish-
ing of I and the appearance of oscillating perturbations connected with 1t
occur at some finlte value R, of the Reynolds number, and also simultane-
ously there should appear a pair of normal perturbations corresponding to
the complex conjugate decrements A and A\*; that is, at the point Ry
should occur the confluence of two real decrements.

The behavior of the decrements near the point of confluence can be traced
by means of an approximate method used in quantum mechnics for the investi-
gation of molecular terms {[8], Section 79) (*).

Let R, be the value of the Reynolds number for which two neighboring
decrements A, and )\, are real and close (but not coincident). We denote
by @, and ¢, the solutions corresponding to i, and 1,, and by y, and
¥ the conjugate solutions at point R,. The solution at a nearby point
Ro+ 86R 1s found from Equation

io. (Ry + 8R) Hp — A’ = AA¢ (5.6)
and can be approximately represented in the form
@ = 19, + P, (5.7)

Substituting (5.7) into (5.6), multiplying in turn by ¢, * and y,% and
integrating, we obtain a system of linear homogeneous equations for the coef-
ficlents ¢, and ¢, of the expansion. From the compatibility condition we

*) This method was used for the investigation of the intersection of levels
in the perturbation spectrum of equilibrium of & conducting fluld in a mag---
netic field [9].
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can determine the decrements near 3,
A == s [A, -+ }‘2 + (1"11 —+ Vz::) O0R] +
VU 1Ay — Ay + Vy — Vi) SRE + V.V BR)? (5.8)

Here
r g
Km==wA4\%JH@ﬂ@ L1z\%fA@ﬂx (m,n =1,2) (5.9)
where the matrix elements V,, and ¥, are real, and V, and V, are lmagi-~
nary (cf. the expansion (3.6) and Equations (5.4)). The coordinate of the

point of intersection is R =R, + R, where 62 1s determined trom condition
A= A

From Equation (5.8) it 1s evident first of all that a simple intersection
is not possible, in which both decrements are real on both sldes of the point
of intersection. For such an Intersection 1t is evidently necessary that
ViaVa,= O 1dentically in R,, which obviously does not occur. In the case
Via Va2 > O intersection is impossible. The necessary conditlon for an inter-
section 1s V,,V; < O ; then at polnt R, there occurs a conjunction of
real decrements, wheras for R > R, the two decrements are complex conju-
gates. As 1s easily seen, the solutions g, and o of (5.7) coincide at
point R, , and at that point both the normalized integrals 7, and 1. 1in
(5.5) vanish. Thus the system of normal perturbations ceases to be complete
at the point A, ; for completeness it 1s necessary to add a "supplementary”
solution [10] .

agoz P Q004
2
g \\ . P —] v \a{:’
4 2
\, £ , “\,\\7 __ _-7;‘
&
aw e
/ - JZ] _
7 Q004
-awvAz// s -
Fig. 3 Fig. 4

Thus neighbaring real decrements (which consequently have different pari-
ties) elther never intersect at all, or merge in certain polnts &, with the
formation of complex conjugate pair. Since in the real domain the spectrum
has alternating "parity"”, this conclusion is valid with respect to any two
levels of different "parity"; but the intersection of the same "parity" is
not at all possible.

6. lll.glo. of fiows with odd profile. As examples we consider Couette
flow with the linear proflle [ = x and-the flow with a cubic profile

7V =x(1 -x) . (Flow of this form arises in steady convection of a fluid
between vertical parallel plates heated to different temperatures [11] ).

For Couette flow the matrlx elements are
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. 2, NG
H,=—_~-__1|1 tanhtt — th o — t 6.1
ik Vm [ + % o @ coth & )\i(()) __xk(o) ] )‘i(O) _)\k(o) ( )
2 (0) 2, (0
HH=_J__[1_mmm+amma_ m)i_@] mf = (6.2)
VIiJ. A N R A ]

(i=0,24..;k=1305...)

With the use of these matrix elements we can calculate the quadratic cor-
rections to thﬁ decrement, summing the series (3.10) of perturbation theory.
Fig. 3 shows x,’n @ and 2,(2) as fune-
tions of the wave number. The values of A

2)  agree well with the results of numeri-
cal calculation [7].

In the case of flow with & cubic profile ¢
the matix elements are expressed by very L
unwieldy equations, which are not glven here.
Figs. 4 and 5 show the quadratic correctims
to the first five decrements as functions of A
the wave number, and Fig.6 shows as an example JﬂL—-——-_‘l_\

~
,-—-
Q000%, /
v P
__ o // wL_____——),z ;
g — e
’___‘_h———_‘ ’1’:) ’/i’
- !
¢ Y/ / 4 a 20/
/Am —
7 - A
\,._/ 0 ~y7 R
Q004 50 ~~. 100
Fig. 5 Pig. 6

the spectrum of decrements for q = 1 . The dashes correspond to extrapola-
tion according to the quadratic correction, The value of the Reynolds num-
ber at which confluence of X2 and )\, occurs with the generation of complex
conJugate decrements was found approximately by use of the equation of the
theory of intersectilon ?5.8), where R,= O was used. The lowest level ),
can be extended to intersect the axis, and thus we can estimate the critilcal
Reynolds number, determlning the boundary of stabllity with respect to mono-
tonous perturbations. Such extrapolation is clearly assoclated with a known
risk. However the conclusion of the exlstence of monotonous instability of
flows with & cubic profile does not involve any doubt. This concluslon was
also obtalned earlier (by other methods) in the investigation of the stabi-
1ity of steady convective motion [12). Besldes, the existence of monotonous
instability is confirmed also by the results of numerical calculations on an
electronic computer; they will be published later. This inatability dis-
tinguishes flow with a cublc profile from Couette flow where, as was shown
in a general form in [13], monotonous perturbations always decay.
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